博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Prime Distance(二次筛素数)
阅读量:7224 次
发布时间:2019-06-29

本文共 3599 字,大约阅读时间需要 11 分钟。

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 1714 17

Sample Output

2,3 are closest, 7,11 are most distant.There are no adjacent primes.

解题思路:

这题做得我都是泪。不断地TLE,好不easy优化好了。又RE。代码也写得非常龊。就是正常的二次筛选素数。

因为数据非常大。第一次筛出46500以内的素数。再依据此筛选出区间内的素数。

注意:尽管给的数没有超int范围,但两数相乘是会超int范围的,我也是在这里RE了。

AC代码:

#include 
#include
#include
#include
using namespace std;const int N = 1000005;const int M = 46500;const int INF = 999999999;bool notprime[N];int prime_1[M + 1], prime_2[N];int num_1 = 0, num_2;void Prime1() // 第一次筛出46500以内的素数{ memset(notprime, false, sizeof(notprime)); for(int i = 2; i <= M; i++) if(!notprime[i]) { prime_1[num_1++] = i; for(int j = 2 * i; j <= M; j += i) notprime[j] = true; }}void Prime2(int l, int u) // 第二次筛出给定范围内的素数{ memset(notprime, false, sizeof(notprime)); num_2 = 0; if(l < 2) l = 2; int k = sqrt(u * 1.0); for(int i = 0; i < num_1 && prime_1[i] <= k; i++) { int t = l / prime_1[i]; if(t * prime_1[i] < l) t++; if(t <= 1) t = 2; for(int j = t; (long long)j * prime_1[i] <= u; j++) // 相乘会超范围,用long long notprime[j * prime_1[i] - l] = 1; } for(int i = 0; i <= u - l; i++) if(!notprime[i]) prime_2[num_2++] = i + l;}int main(){ int l, u, dis, a_1, b_1, a_2, b_2, minn, maxx;; Prime1(); while(scanf("%d%d", &l, &u) != EOF) { minn = INF, maxx = -1; Prime2(l, u); if(num_2 < 2) { printf("There are no adjacent primes.\n"); continue; } for(int i = 1; i < num_2 && prime_2[i] <= u; i++) { dis = prime_2[i] - prime_2[i - 1]; if(dis > maxx) { a_1 = prime_2[i - 1]; a_2 = prime_2[i]; maxx = dis; } if(dis < minn) { b_1 = prime_2[i-1]; b_2 = prime_2[i]; minn = dis; } } printf("%d,%d are closest, %d,%d are most distant.\n", b_1, b_2, a_1, a_2); } return 0;}

转载地址:http://lgzfm.baihongyu.com/

你可能感兴趣的文章
点击文字,把input type="radio"也选中
查看>>
第一章 Java多线程技能
查看>>
Java 集合系列-第八篇-Map架构
查看>>
springmvc 3.2 @MatrixVariable bug 2
查看>>
React-Native PanResponder手势识别器
查看>>
IOS11 光标错位问题
查看>>
如何设计用户登录
查看>>
linux安装mysql5.7.19
查看>>
Zookeeper+ActiveMQ 集群实现
查看>>
加权有向图问题2----多源最短路径问题(Floyd算法)和关键路径算法
查看>>
logback logback.xml常用配置详解(三) <filter>
查看>>
KgMall B2B/B2B2c/C2C版店铺商号初始化
查看>>
Linux内核的ioctl函数学习
查看>>
Liunx Shell入门
查看>>
Thread的中断
查看>>
linux --- 内存管理
查看>>
PostgreSQL
查看>>
CPU 超线程、多核
查看>>
用ASCII码显示string.xml中的特殊字符
查看>>
网站301跳转到新域名
查看>>